

The identification and mitigation of Geohazards using Shallow Airborne Engineering Geophysics and landbased geophysics for brown- and greenfield road investigations.

By Robert Damhuis¹, Pierre Roux¹ and Dr Stoffel Fourie²

¹South African National Road Agency (SANRAL), Republic of South Africa) ²Walter Sisulu University, Eastern Cape, South Africa

The Geological Society Ground Related Risk to Transportation Infrastructure Conference London, 26 to 27 October 2017

South African Road Network

Ground related infrastructure risk

- Geology complex, diverse and old.
- Risks include:
 - Collapsible soils
 - Expansive clays
 - Dykes and faults
 - Rapid weathering dolerites
 - Dolomites
 - Dispersive and Erodible Soils
 - And several other risks

http://www.saforums.co.za/

Map 17: Distribution of mining activities in South Africa South African Geological Hazards Observation System Atlas, 2015 Edition, Council for Geoscience

Case Study: Ermelo

Two potential alignments identified on northern side

- 1. Through already established urban area
- 2. Over 'undermined' area.

Alignment over 'undermined' ground

"Undermined" areas:

- Condemned ground ie no development may take place
 - classified as 'general undermining'
- Society boundaries are not accurate.

The

Mining risks and unknowns

- Mine boundaries
- Mine extraction depth
- Pillar Geometry: if existing
- Primary and Secondary Extraction: extent
- Potential Undermining: Voids and extent
- Coal seam distribution: Thickness and quality
- Groundwater quality: Acid Mine Drainage (AMD)

Is the area suitable for road corridor development?

Risk balancing

- Cost vs. Risk vs. Outcomes
- Balance between technical & practical
- Defensible process
 - -Traceable
 - -Repeatable
 - "Accurate"

Multi Faceted Modeling Approach

The Geological Society serving science, profession & society

Flow chart depicting the planned process of investigation

Multi Faceted Modeling Approach

Phase 1: Air borne geophysics

- Airborne Time Domain Electromagnetics (TDEM – VTEM [™] System)
 - Induces an electromagnetic field in the geology.
 - The early time shows shallow anomalies.
 - The later times shows deeper anomalies.
 - AMW has low pH and is highly conductive.
- Airborne Magnetics
 - Delineates geological structure and lineaments

Geological

ocietv

serving science, profession & society

Phase 1: Air borne geophysics

Ermelo

Van Ondshoornstrom 251-11

1000m

Ermelo

he Geologi Society serving science, profess

Airborne Geophysical Methods

Targets generated through airborne geophysics

Phase 2: Ground geophysics

Three ground geophysical techniques were utilized:

- **TDEM** to target AMW.
- Electric Resistivity Tomography (ERT) to differentiate rock or material horizons and cultural disturbances, sensitive to vertical geological structures.
- **Gravity** very sensitive to lateral changes in density and therefore empty old mining voids.

Ground Geophysical Methods

Phase 3: Ground truthing

- Percussion boreholes (Reverse Circulation)
 - geological horizons and geotechnical parameters,
 - thickness and competency
- Water testing i.e. AMW
 - pH & conductivity

- Optical televiewer (Borehole camera)
- Borehole geophysics using same
 Beological geophysical techniques

Drilling within borehole BH5 intersected a 5x5m cavity at a depth of 26m shown on a TDEM anomaly.

Borehole geophysics and Optical televiewer (Borehole camera)

BH 06: Optical televiewer (Borehole camera)

The geophysics identified a 1x1m cavity at 90m in BH 06.

Drilling confirmed the cavities **exactly!!!**.

Analysis of results & risk

Results

- Undermining (Voids and extent) detected & confirmed (BH3 and BH5).
 - Cavity at 90 m (1 m x 1 m) detected, drilled & confirmed.
 - BH5 Unknown access tunnel 25 m deep (5 m x 5m) detected, drilled & confirmed
- Structural Geology and Coal seam distribution clarified & mapped (Thickness and quality).
- Engineering Geophysics vs Ground Truthing successful.

Area is suitable for road corridor development.

Conclusions

The Multi-Faceted Geophysical Modelling systems approach and the Geological Modelling was successful!

- Cost and time efficient.
- For successful, accurate outcomes:
 - Use more than one geophysical method.
 - Perform investigation in planned stages
 - Quick, high level, lower accuracy airborne progressing to more accurate ground geophysics.
 - Integrate & model all the geophysical data for higher accuracy and better target generation.
 - Ground truthing is critical

Geological

"You pay for a geotech investigation, whether you do one or not. Its just a heck of a lot cheaper to do it up front."

And gentlemen, you can save 500 Lire if you don't do a geotech investigation

damhuisr@nra.co.za 23